skip to main content


Search for: All records

Creators/Authors contains: "Sethna, James P"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Nearly, all dense suspensions undergo dramatic and abrupt thickening transitions in their flow behavior when sheared at high stresses. Such transitions occur when the dominant interactions between the suspended particles shift from hydrodynamic to frictional. Here, we interpret abrupt shear thickening as a precursor to a rigidity transition and give a complete theory of the viscosity in terms of a universal crossover scaling function from the frictionless jamming point to a rigidity transition associated with friction, anisotropy, and shear. Strikingly, we find experimentally that for two different systems—cornstarch in glycerol and silica spheres in glycerol—the viscosity can be collapsed onto a single universal curve over a wide range of stresses and volume fractions. The collapse reveals two separate scaling regimes due to a crossover between frictionless isotropic jamming and frictional shear jamming, with different critical exponents. The material-specific behavior due to the microscale particle interactions is incorporated into a scaling variable governing the proximity to shear jamming, that depends on both stress and volume fraction. This reformulation opens the door to importing the vast theoretical machinery developed to understand equilibrium critical phenomena to elucidate fundamental physical aspects of the shear thickening transition.

     
    more » « less
    Free, publicly-accessible full text available November 1, 2024
  2. We propose a design paradigm for multistate machines where transitions from one state to another are organized by bifurcations of multiple equilibria of the energy landscape describing the collective interactions of the machine components. This design paradigm is attractive since, near bifurcations, small variations in a few control parameters can result in large changes to the system’s state providing an emergent lever mechanism. Further, the topological configuration of transitions between states near such bifurcations ensures robust operation, making the machine less sensitive to fabrication errors and noise. To design such machines, we develop and implement a new efficient algorithm that searches for interactions between the machine components that give rise to energy landscapes with these bifurcation structures. We demonstrate a proof of concept for this approach by designing magnetoelastic machines whose motions are primarily guided by their magnetic energy landscapes and show that by operating near bifurcations we can achieve multiple transition pathways between states. This proof of concept demonstration illustrates the power of this approach, which could be especially useful for soft robotics and at the microscale where typical macroscale designs are difficult to implement.

     
    more » « less
    Free, publicly-accessible full text available August 22, 2024
  3. Abstract Complex models in physics, biology, economics, and engineering are often sloppy , meaning that the model parameters are not well determined by the model predictions for collective behavior. Many parameter combinations can vary over decades without significant changes in the predictions. This review uses information geometry to explore sloppiness and its deep relation to emergent theories. We introduce the model manifold of predictions, whose coordinates are the model parameters. Its hyperribbon structure explains why only a few parameter combinations matter for the behavior. We review recent rigorous results that connect the hierarchy of hyperribbon widths to approximation theory, and to the smoothness of model predictions under changes of the control variables. We discuss recent geodesic methods to find simpler models on nearby boundaries of the model manifold—emergent theories with fewer parameters that explain the behavior equally well. We discuss a Bayesian prior which optimizes the mutual information between model parameters and experimental data, naturally favoring points on the emergent boundary theories and thus simpler models. We introduce a ‘projected maximum likelihood’ prior that efficiently approximates this optimal prior, and contrast both to the poor behavior of the traditional Jeffreys prior. We discuss the way the renormalization group coarse-graining in statistical mechanics introduces a flow of the model manifold, and connect stiff and sloppy directions along the model manifold with relevant and irrelevant eigendirections of the renormalization group. Finally, we discuss recently developed ‘intensive’ embedding methods, allowing one to visualize the predictions of arbitrary probabilistic models as low-dimensional projections of an isometric embedding, and illustrate our method by generating the model manifold of the Ising model. 
    more » « less
  4. null (Ed.)
  5. Unsupervised learning makes manifest the underlying structure of data without curated training and specific problem definitions. However, the inference of relationships between data points is frustrated by the “curse of dimensionality” in high dimensions. Inspired by replica theory from statistical mechanics, we consider replicas of the system to tune the dimensionality and take the limit as the number of replicas goes to zero. The result is intensive embedding, which not only is isometric (preserving local distances) but also allows global structure to be more transparently visualized. We develop the Intensive Principal Component Analysis (InPCA) and demonstrate clear improvements in visualizations of the Ising model of magnetic spins, a neural network, and the dark energy cold dark matter ( Λ CDM ) model as applied to the cosmic microwave background. 
    more » « less